ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.

   Решение

Задачи

Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1221]      



Задача 65182

Темы:   [ Уравнения в целых числах ]
[ Формулы сокращенного умножения (прочее) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 9,10,11

Решите в целых числах уравнение  (x² – y²)² = 16y + 1.

Прислать комментарий     Решение

Задача 65251

Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Пусть  n > 1  – натуральное число. Выпишем дроби  1/n, 2/n, ..., n–1/n  и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через  f(n). При каких натуральных  n > 1  числа  f(n) и  f(2015n) имеют разную чётность?

Прислать комментарий     Решение

Задача 66193

Темы:   [ Многоугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?

Прислать комментарий     Решение

Задача 66196

Темы:   [ Теория алгоритмов (прочее) ]
[ Полуинварианты ]
[ Обратный ход ]
Сложность: 4-
Классы: 8,9,10,11

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
  а) каждая карта наверняка оказалась не там, где была вначале?
  б) рядом со свободным местом наверняка не было туза пик?
Прислать комментарий     Решение


Задача 73629

Темы:   [ Многогранные углы ]
[ Средние величины ]
[ Подсчет двумя способами ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4-
Классы: 10,11

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.

Прислать комментарий     Решение

Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .