ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На сколько частей делят пространство n плоскостей,
проходящих через одну точку, если никакие три не имеют общей
прямой?
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Основание треугольника на 4 меньше высоты, а площадь треугольника равна 96. Найдите основание и высоту треугольника.
В равнобедренном треугольнике ABC ∠B = arctg 8/15. Окружность радиуса 1, вписанная в угол C, касается стороны CB в точке M и отсекает от основания отрезок KE. Известно, что MB = 15/8. Найдите площадь треугольника KMB, если известно, что точки A, K, E, B следуют на основании AB в указанном порядке. Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре? Найдите геометрическое место таких точек X, что
касательные, проведенные из X к данной окружности, имеют
данную длину.
Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор. 3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны. |
Страница: 1 2 3 >> [Всего задач: 11]
3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны.
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
Точка O является точкой пересечения высот остроугольного треугольника ABC. Докажите, что 3 окружности, проходящие: первая через точки O, A, B, вторая — через точки O, B, C и третья — через точки O, C, A, равны между собой.
Три окружности радиуса R проходят через точку H; A, B и C — точки их попарного пересечения, отличные
от H. Докажите, что:
Страница: 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке