Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

ВверхВниз   Решение


Через точку A проведена прямая l, пересекающая окружность S с центром O в точках M и N и не проходящая через O. Пусть M' и N' — точки, симметричные M и N относительно OA, а A' — точка пересечения прямых MN' и M'N. Докажите, что A' совпадает с образом точки A при инверсии относительно S (и, следовательно, не зависит от выбора прямой l).

ВверхВниз   Решение


По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?

ВверхВниз   Решение


В одной урне лежат два белых шара, в другой два черных, в третьей - один белый и один черный. На каждой урне висела табличка, указывающее ее содержимое: ББ, ЧЧ, БЧ. Некто перевесил таблички так, что теперь каждая табличка указывает содержимое урны неправильно. Разрешается вынуть шар из любой урны, не заглядывая в нее. Какое наименьшее число извлечений потребуется, чтобы определить состав всех трех урн?

ВверхВниз   Решение


Докажите, что при инверсии относительно описанной окружности изодинамические центры треугольника переходят друг в друга.

ВверхВниз   Решение


Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?

ВверхВниз   Решение


В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.

ВверхВниз   Решение


На сторонах AB и AC треугольника ABC взяты точки E и F. Прямые EF и BC пересекаются в точке S. Точки M и N – середины отрезков BC и EF соответственно. Прямая, проходящая через вершину A и параллельная MN, пересекает BC в точке K. Докажите, что  BK : CK = FS : ES.

ВверхВниз   Решение


Основанием треугольной пирамиды ABCD является треугольник ABC , в котором A = , C = , BC = 2 . Рёбра AD , BD , CD равны между собой. Сфера радиуса 1 касается рёбер AD , BD , продолжения ребра CD за точку D и плоскости ABC . Найдите отрезок касательной, проведённой из точки A к сфере.

ВверхВниз   Решение


Какое минимальное количество точек на поверхности
   а) додекаэдра,
   б) икосаэдра
надо отметить, чтобы на каждой грани была хотя бы одна отмеченная точка?

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках A и B, причём центр O окружности S1 лежит на окружности S2. Хорда AC окружности S1 пересекает окружность S2 в точке D. Докажите, что отрезки OD и BC перпендикулярны.

ВверхВниз   Решение


Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит ни с одним из них.

ВверхВниз   Решение


В окружность вписан треугольник ABC. Точка P пробегает дугу ACB. Найдите геометрическое место центров вписанных окружностей всевозможных треугольников ABP.

ВверхВниз   Решение


Число x натуральное. Среди утверждений   1)  2x > 70,   2)  x > 100,   3)  3x > 25,   4)   x ≥ 10,   5)  x > 5   три неверных и два верных. Чему равно x?

ВверхВниз   Решение


Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что  AB = a.  Найдите NM.

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

ВверхВниз   Решение


Основанием пирамиды является треугольник PQR , в котором PR = 2 , Q = , R = . Вершина S пирамиды равноудалена от точек P и Q . Сфера касается рёбер PS , QS , продолжения ребра RS за точку S и плоскости PQR . Точка касания с плоскостью основания пирамиды и ортогональная проекция вершины S на эту плоскость лежат на окружности, описанной вокруг треугольника PQR . Найдите рёбра PS , QS , RS .

ВверхВниз   Решение


Автор: Фольклор

Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.

ВверхВниз   Решение


а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

ВверхВниз   Решение


Две окружности радиусов   и   пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что  AB = AC  (точка B не совпадает с C). Найдите AB.

ВверхВниз   Решение


На диагонали AC параллелограмма ABCD взяты точки P и Q так, что  AP = CQ.  Точка M такова, что  PM || AD  и  QM || AB.
Докажите, что точка M лежит на диагонали BD.

ВверхВниз   Решение


За круглым столом сидят 13 богатырей из k городов, где  1 < k < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 222]      



Задача 73677

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 4-
Классы: 8,9,10

а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

Прислать комментарий     Решение

Задача 78482

Тема:   [ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?
Прислать комментарий     Решение


Задача 78567

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 7,8,9

Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

Прислать комментарий     Решение

Задача 79443

Темы:   [ Подсчет двумя способами ]
[ Простые числа и их свойства ]
Сложность: 4-
Классы: 8,9,10

За круглым столом сидят 13 богатырей из k городов, где  1 < k < 13.  Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.

Прислать комментарий     Решение

Задача 79479

Темы:   [ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 4-
Классы: 10

Доказать, что в любой группе из 12 человек можно выбрать двоих, а среди оставшихся 10 человек еще пятерых так, чтобы каждый из этих пятерых удовлетворял следующему условию: либо он дружит с обоими выбранными вначале, либо не дружит ни с одним из них.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .