ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 829]      



Задача 79555

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.

Прислать комментарий     Решение

Задача 98294

Темы:   [ Ломаные ]
[ Вписанные и описанные многоугольники ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
  а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
  б) Докажите, что большего числа самопересечений такая ломаная не может иметь.

Прислать комментарий     Решение

Задача 98496

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Углы между биссектрисами ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.

Прислать комментарий     Решение

Задача 105104

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9,10

Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Прислать комментарий     Решение

Задача 108099

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .