Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

Вниз   Решение


Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.

ВверхВниз   Решение


На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 35746

Темы:   [ Многогранные углы ]
[ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 10,11

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.

Прислать комментарий     Решение

Задача 73629

Темы:   [ Многогранные углы ]
[ Средние величины ]
[ Подсчет двумя способами ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4-
Классы: 10,11

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.

Прислать комментарий     Решение

Задача 87114

Темы:   [ Многогранные углы ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 8,9

Докажите, что сумма плоских углов выпуклого многогранного угла меньше 360o .
Прислать комментарий     Решение


Задача 79564

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательная раскраска (прочее) ]
[ Многогранные углы ]
Сложность: 5+
Классы: 10,11

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Прислать комментарий     Решение


Задача 73537

Темы:   [ Окружности на сфере ]
[ Касающиеся окружности ]
[ Правильная пирамида ]
[ Многогранные углы ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 7
Классы: 10,11

Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .