ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 499]      



Задача 66244

Темы:   [ Вписанные и описанные окружности ]
[ Прямая Симсона ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

Дан треугольник ABC,  O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO.  Докажите, что прямая L образует равные углы с прямыми AB и CD.

Прислать комментарий     Решение

Задача 66308

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

Прислать комментарий     Решение

Задача 66979

Темы:   [ Вписанные и описанные окружности ]
[ Описанные четырехугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 9,10,11

Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.
Прислать комментарий     Решение


Задача 79592

Темы:   [ Правильные многоугольники ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Докажите, что в правильном двенадцатиугольнике A1A2...A12 диагонали A1A5, A2A6, A3A8 и A4A11 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 104095

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .