Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

Вниз   Решение


Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству  P > 2a.

ВверхВниз   Решение


Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

ВверхВниз   Решение


Боковая грань правильной четырёхугольной пирамиды образует с плоскостью основания угол 45o . Найдите угол между противоположными боковыми гранями.

ВверхВниз   Решение


Выразите длину симедианы AS через длины сторон треугольника ABC.

ВверхВниз   Решение


Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.

ВверхВниз   Решение


В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

ВверхВниз   Решение


а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.

ВверхВниз   Решение


Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

ВверхВниз   Решение


Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1$ \bot$OA, где O — центр описанной окружности.

ВверхВниз   Решение


Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?

ВверхВниз   Решение


Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

ВверхВниз   Решение


Автор: Фольклор

В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?

ВверхВниз   Решение


На стороне BC остроугольного треугольника ABC постройте такую точку M , что прямая, проходящая через основания перпендикуляров, опущенных из M на прямые AB и AC , параллельна BC .

ВверхВниз   Решение


Является ли число 12345678926 квадратом?

ВверхВниз   Решение


На числовой прямой в точке P сидит точечный кузнечик. Точки 0 и 1 – ловушки. На каждом ходу мы называем любое положительное число, после чего кузнечик прыгает влево или вправо (по своему выбору) на расстояние, равное этому числу. Для каких P можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек? (Мы всё время видим, где сидит кузнечик.)

ВверхВниз   Решение


Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

ВверхВниз   Решение


Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



Задача 66353

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разные задачи на разрезания ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?

Прислать комментарий     Решение

Задача 86101

Темы:   [ Наглядная геометрия ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Прислать комментарий     Решение

Задача 103951

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 5,6,7

Можно ли разрезать прямоугольник размерами 78×55 см на прямоугольники 5×11 см?
Прислать комментарий     Решение


Задача 107713

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Разные задачи на разрезания ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3
Классы: 8,9

Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

Прислать комментарий     Решение


Задача 64691

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .