Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)

Вниз   Решение


Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по трём высотам.

ВверхВниз   Решение



Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

ВверхВниз   Решение



Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

ВверхВниз   Решение


Два выпуклых многоугольника A1A2...An и B1B2...Bn  (n ≥ 4)  таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?

ВверхВниз   Решение


Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

ВверхВниз   Решение


Какое наибольшее число острых углов может иметь выпуклый многоугольник?

ВверхВниз   Решение


Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

ВверхВниз   Решение


Концы отрезка AB принадлежат граням двугранного угла, равного ϕ . Расстояния AA1 и BB1 от точек A и B до ребра двугранного угла равны a и b соответственно, A1B1 = c . Найдите AB .

ВверхВниз   Решение


Вершины A и B правильного треугольника ABC лежат на окружности S, а вершина C — внутри этой окружности. Точка D лежит на окружности S, причем BD = AB. Прямая CD пересекает S в точке E. Докажите, что длина отрезка EC равна радиусу окружности S.

ВверхВниз   Решение


На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

ВверхВниз   Решение


Автор: Белухов Н.

Докажите, что любой выпуклый четырёхугольник можно разрезать на пять многоугольников, каждый из которых имеет ось симметрии.

ВверхВниз   Решение



Основание пирамиды - ромб с острым углом в 30o. Боковые грани наклонены к плоскости основания под углом в 60o. Найдите объем пирамиды, если радиус вписанного в ромб круга равен r.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



Задача 86971

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 86972

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - ромб с острым углом в 30o. Боковые грани наклонены к плоскости основания под углом в 60o. Найдите объем пирамиды, если радиус вписанного в ромб круга равен r.

Прислать комментарий     Решение


Задача 86973

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - параллелограмм ABCD с площадью m2. Известно, что BD перпендикулярно AD. Двугранные углы при ребрах AD и BC равны 45o, а при ребрах AB и CD - 60o. Найдите боковую поверхность и объем пирамиды.

Прислать комментарий     Решение


Задача 87358

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


В основании четырехугольной пирамиды лежит ромб ABCD, в котором $ \angle$BAD = 60o. Известно, что SD = SB, SA = SC = AB. На ребре DC взята точка E так, что площадь треугольника BSE наименьшая среди площадей всех сечения пирамиды, содержащих отрезок BS и пересекающих отрезок DC. Найдите отношение DE : EC.

Прислать комментарий     Решение


Задача 87078

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .