Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и цилиндр, центр
симметрии которого лежит на прямой
SO (
SO – высота пирамиды). Точка
E – середина апофемы грани
BSC , точка
F принадлежит ребру
SD , причём
SF=2
FD . Прямоугольник, являющийся одним из
осевых сечений цилиндра, расположен так, что две его вершины лежат на
прямой
AB , а одна из двух других вершин лежит на прямой
EF . Найдите
объём цилиндра, если
SO=12
,
AB=4
.
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и конус, центр
основания которого лежит на прямой
SO (
SO – высота пирамиды). Точка
E лежит на ребре
SD , причём
SE=2
ED , точка
F –
середина ребра
AD . Треугольник, являющийся одним из
осевых сечений конуса, расположен так, что две его вершины лежат на прямой
CD , а третья – на прямой
EF . Найдите объём конуса, если
AB=1
,
SO= .
|
|
Сложность: 5- Классы: 10,11
|
На плоскости дан квадрат со стороной
a . Найти объём тела,
состоящего из всех точек пространства, расстояние от которых до
части плоскости, ограниченной квадратом, не больше
a .
|
|
Сложность: 4 Классы: 10,11
|
На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что плоскость, проходящая через середины двух
противоположных рёбер любой треугольной пирамиды, делит её
объём пополам.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]