Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Точки $P$ и $Q$ выбираются на стороне $BC$ треугольника $ABC$ так, что $BP=CQ$. Отрезки $AP$ и $AQ$ в пересечении со вписанной в треугольник окружностью образуют четырехугольник $XYZT$. Найдите геометрическое место точек пересечения диагоналей таких четырехугольников.

Вниз   Решение


В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.

ВверхВниз   Решение


Периметр ромба равен 8, высота равна 1. Найдите тупой угол ромба.

ВверхВниз   Решение


Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

ВверхВниз   Решение


Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что  a/$ \alpha$ + b/$ \beta$ + c/$ \gamma$ $ \geq$ 3/2.


ВверхВниз   Решение


В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

ВверхВниз   Решение


В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?

ВверхВниз   Решение


ABCD — выпуклый четырехугольник площади S. Угол между прямыми AB и CD равен a, угол между AD и BC равен $ \beta$. Докажите, что

AB . CD sin$\displaystyle \alpha$ + AD . BC sin$\displaystyle \beta$ $\displaystyle \leq$ 2S $\displaystyle \leq$ AB . CD + AD . BC.


ВверхВниз   Решение


Автор: Белухов Н.

В треугольнике ABC  ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.

ВверхВниз   Решение



Через середину ребра AB куба ABCDA1B1C1D1 с ребром, равным a, проведена плоскость, параллельная прямым BD1 и A1C1.

1) В каком отношении эта плоскость делит диагональ DB1?

2) Найдите площадь полученного сечения.

ВверхВниз   Решение


На продолжении ребра ST за точку T правильной четырёхугольной пирамиды SPQRT с вершиной S взята такая точка B , что расстояние от неё до плоскости SPQ равно . Найдите отрезок BT , если QR = 12 , а SR = 10 .

ВверхВниз   Решение


В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.

ВверхВниз   Решение


Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую -- в точках C и D. Докажите, что AB || CD.

ВверхВниз   Решение


Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

ВверхВниз   Решение


На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?

ВверхВниз   Решение


На продолжении ребра SK правильной четырёхугольной пирамиды SKLMN с вершиной S взята такая точка A , что расстояние от неё до плоскости SMN равно 24. Найдите отрезок KA , если SL = 2 , а MN = 16 .

ВверхВниз   Решение


Пусть a, b, c, d длины четырёх последовательных сторон четырёхугольника, S его площадь. Докажите неравенства:

а) S ab + cd;

б) S ac + bd.

в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.

ВверхВниз   Решение


Дан параллелограмм ABCD. Окружность, проходящая через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R соответственно. Докажите, что  AP . AB = AR . AD = AQ . AC.

ВверхВниз   Решение


В треугольнике ABC угол C прямой. Докажите, что при гомотетии с центром C и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду SABCD с вершиной S пересекает плоскость, проходящая через середины рёбер SB и SC и перпендикулярная грани SAD . Площадь основания пирамиды в восемь раз больше площади получившегося сечения. Найдите угол между боковой гранью и плоскостью основания пирамиды.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 398]      



Задача 87299

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды.
Прислать комментарий     Решение


Задача 87300

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Правильную четырёхугольную пирамиду PKLMN с вершиной P пересекает плоскость, проходящая через вершину основания L и перпендикулярная ребру PN . Площадь получившегося сечения в три раза меньше площади основания пирамиды. Найдите отношение отрезка PK к высоте пирамиды.
Прислать комментарий     Решение


Задача 87301

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Правильную четырёхугольную пирамиду SABCD с вершиной S пересекает плоскость, проходящая через середины рёбер SB и SC и перпендикулярная грани SAD . Площадь основания пирамиды в восемь раз больше площади получившегося сечения. Найдите угол между боковой гранью и плоскостью основания пирамиды.
Прислать комментарий     Решение


Задача 87306

Темы:   [ Правильная пирамида ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 3
Классы: 8,9

На продолжении ребра SK правильной четырёхугольной пирамиды SKLMN с вершиной S взята такая точка A , что расстояние от неё до плоскости SMN равно 24. Найдите отрезок KA , если SL = 2 , а MN = 16 .
Прислать комментарий     Решение


Задача 87307

Темы:   [ Правильная пирамида ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 3
Классы: 8,9

На продолжении ребра ST за точку T правильной четырёхугольной пирамиды SPQRT с вершиной S взята такая точка B , что расстояние от неё до плоскости SPQ равно . Найдите отрезок BT , если QR = 12 , а SR = 10 .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .