ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан выпуклый n-угольник, никакие две стороны
которого не параллельны. Докажите, что различных треугольников,
о которых идет речь в задаче 22.8, не менее n - 2.
Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы. Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой. Пусть x, y, z – положительные числа и xyz(x + y + z) = 1. Найдите наименьшее значение выражения (x + y)(x + z).
В треугольник ABC вписана окружность, которая касается стороны AB в точке D, а стороны AC — в точке E. Найдите площадь треугольника ADE, если известно, что AD = 6, EC = 2, а угол BCA равен 60o.
Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении 1 : 3. Найдите стороны параллелограмма. Найдите сумму углов, которые произвольная прямая образует с плоскостью и прямой, перпендикулярной этой плоскости. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 93]
Найдите сумму углов, которые произвольная прямая образует с плоскостью и прямой, перпендикулярной этой плоскости.
Докажите, что в кубе $ABCDA_1B_1C_1D_1$ прямые $AC_1$ и $BD$ перпендикулярны.
Точки K и M – середины ребер AB и AC треугольной пирамиды ABCD с площадью основания p . Найдите площадь грани BCD , если сечение DKM имеет площадь q , а основание высоты пирамиды попадает в точку пересечения медиан основания ABC .
Площади граней ABC и ADC тетраэдра ABCD равны P и Q , двугранный угол между ними равен α . Найдите площадь треугольника, по которому биссекторная плоскость указанного угла пересекает тетраэдр.
В основании пирамиды ABCD лежит прямоугольный треугольник ABC с гипотенузой AC , DC – высота пирамиды, AB=1 , BC=2 , CD=3 . Найдите двугранный угол между плоскостями ADB и ADC .
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 93]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке