ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход.

Вниз   Решение


Дана правильная четырёхугольная пирамида SABCD ( S – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера с центром в точке O лежит над плоскостью основания ABCD , касается этой плоскости в точке A и, кроме того, касается бокового ребра SB . Найдите объём пирамиды OABCD .

ВверхВниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg $ {\dfrac{x}{2}}$ рационально.

ВверхВниз   Решение


Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 86931

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 8,9

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
Прислать комментарий     Решение


Задача 87117

Тема:   [ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 8,9

Верно ли, что в сечении любого трёхгранного угла плоскостью можно получит правильный треугольник?
Прислать комментарий     Решение


Задача 87632

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Перпендикулярные плоскости ]
Сложность: 3
Классы: 10,11

Найдите двугранные углы трёхгранного угла, плоские углы которого равны 90o , 90o и α .
Прислать комментарий     Решение


Задача 87633

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Куб ]
Сложность: 3
Классы: 10,11

Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.
Прислать комментарий     Решение


Задача 87634

Тема:   [ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 10,11

В каких пределах может изменяться плоский угол трёхгранного угла, если два других плоских угла соответственно равны: а) 70o и 100o ; б) 130o и 150o ?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .