Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Вниз   Решение


Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

ВверхВниз   Решение


На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

ВверхВниз   Решение


а) Докажите, что производящая функция последовательности чисел Фибоначчи   F(x) = F0 + F1x + F2x² + ... + Fnxn + ...

может быть записана в виде     где   = = .

б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.

ВверхВниз   Решение


В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.

ВверхВниз   Решение


Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?

ВверхВниз   Решение


Найдите наименьшее натуральное n, для которого существует такое m, что  

ВверхВниз   Решение


В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.

ВверхВниз   Решение


Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

ВверхВниз   Решение


На доске написано:
    В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.

ВверхВниз   Решение


Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

ВверхВниз   Решение


Докажите, что если α , β и γ – углы остроугольного треугольника, то sin α+ sin β+ sin γ>2 .

ВверхВниз   Решение


Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?

ВверхВниз   Решение


Автор: Фомин Д.

Сколько существует таких пар натуральных чисел  (m, n),  каждое из которых не превышает 1000, что  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 19]      



Задача 98049

Темы:   [ Геометрические интерпретации в алгебре ]
[ Приближения чисел ]
[ Метод координат на плоскости ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 8,9,10

Автор: Фомин Д.

Сколько существует таких пар натуральных чисел  (m, n),  каждое из которых не превышает 1000, что  

Прислать комментарий     Решение

Задача 60621

Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Линейные рекуррентные соотношения ]
Сложность: 5-
Классы: 10,11

Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

Прислать комментарий     Решение

Задача 98247

Темы:   [ Десятичная система счисления ]
[ Логарифмические неравенства ]
[ Целая и дробная части. Принцип Архимеда ]
[ Приближения чисел ]
Сложность: 4+
Классы: 10,11

Рассматривается последовательность, n-й член которой есть первая цифра числа 2n.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.

Прислать комментарий     Решение

Задача 73787

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод координат на плоскости ]
[ Поворот помогает решить задачу ]
[ Рациональные и иррациональные числа ]
[ Приближения чисел ]
[ Тригонометрия (прочее) ]
Сложность: 7
Классы: 9,10,11

а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
б) Решите аналогичную задачу для правильного пятиугольника.
в) Для каких правильных n-угольников верно аналогичное утверждение?

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .