ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.

   Решение

Задачи

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1275]      



Задача 98439

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD вписан в окружность с центром O. Описанные окружности треугольников ABO и CDO, пересеклись второй раз в точке F. Докажите, что описанная окружность треугольника AFD проходит через точку E пересечения отрезков AC и BD.

Прислать комментарий     Решение

Задача 98509

Темы:   [ Неравенства с медианами ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.

Прислать комментарий     Решение

Задача 98559

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.

Прислать комментарий     Решение

Задача 98606

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что  AK + LC = KL.  Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.

Прислать комментарий     Решение

Задача 102395

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AB = a,  AC = b,  точка O – центр описанной окружности. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Прислать комментарий     Решение

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .