Страница:
<< 94 95 96 97
98 99 100 >> [Всего задач: 2404]
|
|
|
Сложность: 3 Классы: 6,7,8
|
Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.
|
|
|
Сложность: 3 Классы: 8,9,10
|
В одной из вершин а) октаэдра; б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?
Шарообразная планета окружена 25 точечными астероидами.
Доказать, что в любой момент на поверхности планеты найдётся точка, из которой астроном не сможет наблюдать более 11 астероидов.
|
|
|
Сложность: 3 Классы: 10,11
|
Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.
|
|
|
Сложность: 3 Классы: 7,8,9
|
Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?
Страница:
<< 94 95 96 97
98 99 100 >> [Всего задач: 2404]