Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 2399]
|
|
Сложность: 3 Классы: 7,8,9
|
Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
|
|
Сложность: 3 Классы: 9,10,11
|
Известно, что x + 2y + 3z = 1. Какое минимальное значение может принимать выражение x² + y² + z²?
AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём AC1 : C1B = 1 : 2. Отрезки AA1 и CC1 пересекаются в точке M.
Найдите отношения AM : MA1 и CM : MC1.
Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.
|
|
Сложность: 3 Классы: 7,8,9
|
Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)
Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 2399]