Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 2404]
|
|
|
Сложность: 3 Классы: 10,11
|
Даны шар и плоскость. На поверхности шара можно делать построения циркулем, а на плоскости – циркулем и линейкой.
Как на плоскости построить отрезок, равный радиусу шара?
|
|
|
Сложность: 3 Классы: 7,8,9
|
Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
|
|
|
Сложность: 3 Классы: 9,10,11
|
Известно, что x + 2y + 3z = 1. Какое минимальное значение может принимать выражение x² + y² + z²?
AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём AC1 : C1B = 1 : 2. Отрезки AA1 и CC1 пересекаются в точке M.
Найдите отношения AM : MA1 и CM : MC1.
Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 2404]