Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2399]      



Задача 87005

Темы:   [ Свойства сечений ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковое ребро равно b . Найдите площадь сечения пирамиды плоскостью, проходящей через середины двух рёбер основания и середину одного из боковых рёбер.
Прислать комментарий     Решение


Задача 87006

Темы:   [ Свойства сечений ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Угол между противоположными рёбрами AB и CD пирамиды ABCD равен α , AB = a , CD = b . Найдите площадь сечения пирамиды плоскостью, проходящей через середину ребра BC параллельно прямым AB и CD .
Прислать комментарий     Решение


Задача 87015

Темы:   [ Свойства сечений ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Сторона основания ABCD правильной четырёхугольной пирамиды SABCD равна a , боковое ребро равно b . Найдите площадь сечения пирамиды плоскостью, проходящей через середину ребра AB параллельно прямым BD и AS .
Прислать комментарий     Решение


Задача 87016

Темы:   [ Свойства сечений ]
[ Тетраэдр и пирамида ]
Сложность: 3
Классы: 8,9

Основание четырёхугольной пирамиды SABCD – параллелограмм ABCD . 1) Постройте сечение пирамиды плоскостью, проходящей через середину ребра AB параллельно плоскости SAD . 2) Найдите площадь полученного сечения, если площадь грани SAD равна 16.
Прислать комментарий     Решение


Задача 87032

Темы:   [ Объем тетраэдра и пирамиды ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 3
Классы: 8,9

На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .