Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 2396]      



Задача 109046

Темы:   [ Параллельность прямых и плоскостей ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

Прямая a , не лежащая в плоскости α , параллельна некоторой прямой этой плоскости. Докажите, что прямая a параллельна плоскости α .
Прислать комментарий     Решение


Задача 109048

Темы:   [ Параллельность прямых и плоскостей ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Прямые a и b параллельны. Плоскость, проходящая через прямую a , и плоскость, проходящая через прямую b , пересекаются по прямой c . Докажите, что прямая c параллельна каждой из прямых a и b .
Прислать комментарий     Решение


Задача 109072

Темы:   [ Средняя линия треугольника ]
[ Тетраэдр (прочее) ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки пространства, не лежащие в одной плоскости. Докажите, что отрезок, соединяющий середины AB и CD , пересекается с отрезком, соединяющим середины AD и BC . При этом каждый из указанных отрезков делится точкой пересечения пополам.
Прислать комментарий     Решение


Задача 109073

Темы:   [ Параллельность прямых и плоскостей ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

В пространстве проведены три прямые, не лежащие в одной плоскости. но при этом никакие две не являются скрещивающимися. Докажите, что все эти прямые проходят через одну точку либо параллельны.
Прислать комментарий     Решение


Задача 109074

Темы:   [ Параллельность прямых и плоскостей ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

Докажите, что через любую из двух скрещивающихся прямых можно провести плоскость, параллельную другой прямой, и притом только одну.
Прислать комментарий     Решение


Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 2396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .