|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 490]
Найдите все конечные множества точек на плоскости, обладающие таким свойством: никакие три точки множества не лежат на одной прямой и вместе с каждыми тремя точками данного множества ортоцентр треугольника, образованного этими точками, также принадлежит данному множеству.
Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений (x – a)(x – b) = x – c, (x – b)(x – c) = x – a,
Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.
В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.
Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 490] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|