Страница:
<< 153 154 155 156
157 158 159 >> [Всего задач: 829]
|
|
Сложность: 5- Классы: 9,10
|
На стороне BC квадрата ABCD выбрали точку M. Пусть X, Y, Z – центры окружностей, вписанных в треугольники ABM, CMD, AMD соответственно; Hx, Hy, Hz – ортоцентры треугольников AXB, CYD, AZD соответственно. Докажите, что точки Hx, Hy, Hz лежат на одной прямой.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.
В треугольнике ABC ∠A = 60°, точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение AN : MB.
Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.
На сторонах AC и BC треугольника ABC во внешнюю сторону
построены квадраты ACA1A2 и BCB1B2.
Докажите, что прямые A1B, A2B2 и AB1 пересекаются в одной точке.
Страница:
<< 153 154 155 156
157 158 159 >> [Всего задач: 829]