ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 403]      



Задача 52921

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу вписанной окружности равно k. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52922

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике PQR точка A — центр вписанной окружности, а точка B — центр окружности, описанной около треугольника PQR. Прямая AB перпендикулярна биссектрисе QA треугольника PQR. Известно, что угол ABQ равен $ \beta$. Найдите углы треугольника PQR.

Прислать комментарий     Решение


Задача 52470

Темы:   [ Площадь четырехугольника ]
[ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9,10

Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
Докажите, что ломаная AOC делит его на две равновеликие части.

Прислать комментарий     Решение

Задача 66138

Темы:   [ Вписанные и описанные окружности ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Неравенство треугольника (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Прислать комментарий     Решение

Задача 66268

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10

Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 403]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .