ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 460]      



Задача 55006

Темы:   [ Общие четырехугольники ]
[ Выпуклые многоугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 8,9

Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

Прислать комментарий     Решение


Задача 55061

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём  MC = 4.  N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM.

Прислать комментарий     Решение

Задача 55114

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Медианы AN и BM треугольника ABC равны 6 и 9 соответственно и пересекаются в точке K, причём угол AKB равен 30o. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55125

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.

Прислать комментарий     Решение

Задача 55204

Темы:   [ Неравенства с площадями ]
[ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что  SABCD ≤ EG·HF.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .