ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 464]      



Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Задача 98329

Темы:   [ Шестиугольники ]
[ Средняя линия трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 10,11

Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

Прислать комментарий     Решение

Задача 102312

Темы:   [ Поворот ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Точка O расположена на стороне AC треугольника ABC так, что  CO : CA = 2 : 3.  При повороте этого треугольника на некоторый угол вокруг точки O вершина B переходит в вершину C, а вершина A – в точку D, лежащую на стороне AB. Найдите отношение площадей треугольников BOD и ABC.

Прислать комментарий     Решение

Задача 108088

Темы:   [ Описанные четырехугольники ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r.

Прислать комментарий     Решение

Задача 115604

Темы:   [ Вписанные четырехугольники ]
[ Вспомогательные равные треугольники ]
[ Медиана делит площадь пополам ]
Сложность: 3+
Классы: 8,9

Известно, что для вписанного в окружность четырёхугольника ABCD выполнено равенство  AB : BC = AD : DC.  Прямая, проходящая через вершину B и середину диагонали AC, пересекает окружность в точке M, отличной от B. Докажите, что  AM = CD.

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 464]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .