ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность, пересекающая боковые стороны AC и CB равнобедренного треугольника ACB соответственно в точках P и Q, является описанной около треугольника ABQ. Отрезки AQ и BP пересекаются в точке D так, что AQ : AD = 4 : 3. Найдите площадь треугольника DQB, если площадь треугольника PQC равна 3. Решение |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 460]
В параллелограмме ABCD точка E делит пополам сторону CD, биссектриса угла ABC пересекает в точке O отрезок AE. Найдите площадь четырёхугольника OBCE, зная, что AD = a, DE = b, ABO = .
Через точку M, расположенную на диаметре окружности радиуса 4, проведена хорда AB, образующая с диаметром угол 30o. Через точку B проведена хорда BC, перпендикулярная данному диаметру. Найдите площадь треугольника ABC, если AM : MB = 2 : 3.
Через вершины A и B треугольника ABC проведена окружность радиуса 2, отсекающая от прямой BC отрезок, равный 4, и касающаяся прямой AC в точке A. Из точки B восставлен перпендикуляр к прямой BC до пересечения с прямой AC в точке F. Найдите площадь треугольника ABC, если BF = 2.
На сторонах BC и CD квадрата ABCD взяты точки E и F, причём ∠EAF = 45°. Отрезки AE и AF пересекают диагональ BD в точках P и Q.
На стороне AB треугольника ABC отмечена точка K, а на стороне AC – точка M. Отрезки BM и CK пересекаются в точке P. Оказалось, что углы APB, BPC и CPA равны по 120°, а площадь четырёхугольника AKPM равна площади треугольника BPC. Найдите угол BAC.
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|