ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность, пересекающая боковые стороны AC и CB равнобедренного треугольника ACB соответственно в точках P и Q, является описанной около треугольника ABQ. Отрезки AQ и BP пересекаются в точке D так, что AQ : AD = 4 : 3. Найдите площадь треугольника DQB, если площадь треугольника PQC равна 3.

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 460]      



Задача 55013

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
Сложность: 4-
Классы: 8,9

В параллелограмме ABCD точка E делит пополам сторону CD, биссектриса угла ABC пересекает в точке O отрезок AE. Найдите площадь четырёхугольника OBCE, зная, что AD = a, DE = b, $ \angle$ABO = $ \alpha$.

Прислать комментарий     Решение


Задача 55495

Темы:   [ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через точку M, расположенную на диаметре окружности радиуса 4, проведена хорда AB, образующая с диаметром угол 30o. Через точку B проведена хорда BC, перпендикулярная данному диаметру. Найдите площадь треугольника ABC, если AM : MB = 2 : 3.

Прислать комментарий     Решение


Задача 53259

Темы:   [ Две касательные, проведенные из одной точки ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через вершины A и B треугольника ABC проведена окружность радиуса 2, отсекающая от прямой BC отрезок, равный 4, и касающаяся прямой AC в точке A. Из точки B восставлен перпендикуляр к прямой BC до пересечения с прямой AC в точке F. Найдите площадь треугольника ABC, если  BF = 2.

Прислать комментарий     Решение

Задача 55397

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вспомогательная окружность ]
[ Отношение площадей подобных треугольников ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки E и F, причём  ∠EAF = 45°.  Отрезки AE и AF пересекают диагональ BD в точках P и Q.
Докажите, что  SAEF = 2SAPQ.

Прислать комментарий     Решение

Задача 64549

Темы:   [ Точка Торричелли ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Признаки подобия ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4-

На стороне AB треугольника ABC отмечена точка K, а на стороне AC – точка M. Отрезки BM и CK пересекаются в точке P. Оказалось, что углы APB, BPC и CPA равны по 120°, а площадь четырёхугольника AKPM равна площади треугольника BPC. Найдите угол BAC.

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .