ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?
Докажите, что медиана разбивает треугольник на два равновеликих треугольника.
Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность. Существует ли многогранник (не обязательно выпуклый), полных список рёбер которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH (на рисунке приведена схема соединения рёбер)? Рассеянный Ученый сконструировал прибор, состоящий из датчика и передатчика. Средний срок (математическое ожидание) службы датчика 3 года, средний срок службы передатчика 5 лет. Зная распределения срока службы датчика и передатчика, Рассеянный Ученый вычислил, что средний срок службы всего прибора равен 3 года 8 месяцев. Не ошибся ли Рассеянный Ученый в своих расчетах? На сторонах треугольника ABC внешним (внутренним) образом построены
правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые
AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные
координаты этой точки.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер? Пусть α, β и γ - углы треугольника ABC. Докажите, что
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника. Докажите, что предпоследняя цифра любой степени числа 3 чётна. Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов. Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля? У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30×70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см. 175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
Докажите, что центр масс системы точек
X1,..., Xn,
Y1,..., Ym с массами
a1,..., an,
b1,..., bm
совпадает с центром масс двух точек — центра масс X первой
системы с массой
a1 +...+ an и центра масс Y второй системы
с массой
b1 +...+ bm.
Постройте окружность, касающуюся трех данных
окружностей (задача Аполлония).
Несколько человек делят наследство. Наследник считается бедным, если ему досталось меньше 99 рублей, богатым, – если ему досталось больше 10000 рублей. Величина наследства и число людей таковы, что при любом способе дележа у богатых окажется не меньше денег, чем у бедных. Докажите, что при любом способе дележа у богатых не меньше чем в 100 раз больше денег, чем у бедных. Положительные числа a, b, c, d таковы, что a ≤ b ≤ c ≤ d и a + b + c + d ≥ 1. Докажите, что a² + 3b² + 5c² + 7d² ≥ 1. На плоскости даны три окружности, центры которых
не лежат на одной прямой. Проведем радикальные оси для
каждой пары этих окружностей. Докажите, что все три
радикальные оси пересекаются в одной точке.
а) Докажите, что центр масс существует и единствен для любой
системы точек.
Положительные числа a, b, c таковы, что a ≥ b ≥ c и a + b + c ≤ 1. Докажите, что a² + 3b² + 5c² ≤ 1. Из стакана молока три ложки содержимого переливают в стакан с чаем и небрежно помешивают. Затем зачёрпывают три ложки полученной смеси и переливают их обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем? На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.) Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1. На турнире им. Ломоносова в институте МИМИНО были конкурсы по математике, физике, химии, биологии и бальным танцам. Когда турнир закончился, выяснилось, что на каждом конкурсе побывало нечётное количество школьников, и каждый школьник участвовал в нечётном количестве конкурсов. Чётное или нечётное число школьников пришло на турнир в МИМИНО? Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки. У Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.) |
Задача 32102
УсловиеУ Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.) Решение 1Заметим, что перед встречей с Ванной у Джона остался один тремпончик, так как полтремпончика составляли половину этого количества. Перед встречей с Банной у него было 3 тремпончика, так как половину этого количества составляли один и еще полтремпончика, то есть полтора. Аналогично получаем, что изначально было 7 тремпончиков. Решение 2Добавим Джону один невидимый трепомпончик. Тогда каждой девушке он отдавал половину имеющихся тремпончиков, а невидимый так и оставался в корзине. В конце остался только невидимый термпончик. Так как девушек было три, то в начале у Джона было 2·2·2 = 8 тремпончиков, включая невидимый. Ответ7 тремпончиков. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке