ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке E;AD - биссектриса треугольника ABC. Докажите, что AE = ED.
Две окружности радиусов r и R с центрами в точках O1 и O касаются внутренним образом в точке K. В точке A окружности радиуса r проведена касательная, пересекающая окружность радиуса R в точках B и C. Известно, что AC : AB = p и отрезок AC пересекает отрезок OK. Определите: а) при каких условиях на r, R и p возможна такая геометрическая конфигурация; б) длину отрезка BC.
По мнению Тани, в идеальном кофейном напитке должно быть ровно в 9 раз больше кофе, чем молока. У Глеба есть стакан и кружка, а также целая цистерна молока и огромная турка с неограниченным запасом кофе. Аккуратный Глеб может отпить ровно половину содержимого кружки или стакана. Как Глебу приготовить для Тани целый стакан идеального кофейного напитка, если точный объём кружки неизвестен, но он как минимум на $10\%$ больше объёма стакана? Глеб может наливать кофе и молоко в стакан или в кружку, может выливать содержимое, переливать из кружки в стакан или наоборот, отпивать половину содержимого любое конечное количество раз. Периметр прямоугольника равен 40. Какой из таких прямоугольников имеет наибольшую площадь? Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение. Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$. а) Какое наибольшее число различных может быть среди них? б) Найдите все возможные количества различных длин. В квадрате отметили 20 точек и соединили их непересекающимися отрезками друг с другом и с вершинами квадрата так, что квадрат разбился на треугольники. Сколько получилось треугольников? Какое наибольшее число острых углов может иметь выпуклый
многоугольник?
Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы три проведённые окружности имели в точках пересечения взаимно перпендикулярные касательные.
Докажите, что медиана треугольника ABC, проведённая из вершины A, меньше полусуммы сторон AB и AC.
Найдите число нулей, на которое оканчивается число 11100 – 1. Параллельные стороны трапеции равны 25 и 4, а непараллельные – 20 и 13. Найдите высоту трапеции. |
Задача 54261
УсловиеПараллельные стороны трапеции равны 25 и 4, а непараллельные – 20 и 13. Найдите высоту трапеции. ПодсказкаПроведите через вершину меньшего основания трапеции прямую, параллельную одной из боковых сторон, и найдите высоту отсечённого треугольника. Решение Из вершины C меньшего основания BC трапеции ABCD опустим перпендикуляр CK на большое основание AD. Пусть AD = 25, BC = 4, AB = 20,
Ответ12. ЗамечанияВысоту CK можно также найти из треугольника MCD, применив формулу Герона. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке