ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 66204  (#1)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 7,8,9

Нарисуйте на клетчатой бумаге четырёхугольник с вершинами в узлах, длины сторон которого – различные простые числа.

Прислать комментарий     Решение

Задача 66299  (#8.1)

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD, в котором  AB = BC  и  AD = CD,  вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что  PQ || AC.

Прислать комментарий     Решение

Задача 66306  (#9.1)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение  AK : BK  равно отношению стороны правильного пятиугольника к его диагонали.

Прислать комментарий     Решение

Задача 66314  (#10.1)

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 3+
Классы: 9,10

Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

Прислать комментарий     Решение

Задача 66205  (#2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

Окружность отсекает от прямоугольника ABCD четыре прямоугольных треугольника, середины гипотенуз которых A0, B0, C0 и D0 соответственно.
Докажите, что отрезки A0C0 и B0D0 равны.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .