ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите множество середин хорд, проходящих через заданную точку A внутри окружности. Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
Гипотенуза прямоугольного треугольника равна a, один из острых
углов равен α. В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.
В треугольной пирамиде SABC высота SO проходит через точку O –
центр круга, вписанного в основание ABC пирамиды. Известно, что
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Докажите, что в треугольнике угол A острый тогда и
только тогда, когда ma > a/2.
Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими? Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10? Докажите, что число 100! не является полным квадратом. В круге отметили точку. Можно ли так разрезать этот круг на три части, чтобы из них можно было бы сложить новый круг, у которого отмеченная точка стояла бы в центре? Объясните, как покрасить часть точек плоскости так, чтобы на каждой окружности радиуса 1 см было ровно четыре покрашенные точки. Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999? Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой. На доске записаны два числа a и b (a > b). Их стирают и заменяют числами a+b/2 и a–b/2. С вновь записанными числами поступают аналогичным образом. Верно ли, что после нескольких стираний разность между записанными на доске числами станет меньше 1/2002? Даны окружность S, точка A на ней и прямая l.
Постройте окружность, касающуюся данной окружности в точке A и данной
прямой.
Может ли n! оканчиваться ровно на пять нулей? Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1. Радиусы двух пересекающихся окружностей равны 13 и 15, а общая хорда равна 24. Найдите расстояние между центрами. На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи. На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку. Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе? Дано число 1·2·3·4·5·...·56·57. Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые). Докажите, что
В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB. Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a. Вершины многоугольника (не обязательно выпуклого) расположены в узлах
целочисленной решетки. Внутри его лежит n узлов решетки, а на
границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула
Пика).
Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Вершины треугольника ABC расположены в узлах
целочисленной решетки, причем на его сторонах других
узлов нет, а внутри его есть ровно один узел O. Докажите,
что O — точка пересечения медиан треугольника ABC.
а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1345]
У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?
На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?
а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
Докажите, что медианы треугольника ABC пересекаются в одной
точке и делятся ею в отношении 2 : 1, считая от вершины.
Разрежьте произвольный треугольник на 3 части и сложите из них
прямоугольник.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1345]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке