Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что  ∠ABM = ∠MQP.

Вниз   Решение


В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.

ВверхВниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

ВверхВниз   Решение


Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.

ВверхВниз   Решение


На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

ВверхВниз   Решение


На стороне AB треугольника ABC отметили точки K и L так, что  KL = BC  и  AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.

ВверхВниз   Решение


Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи?

ВверхВниз   Решение


Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет 15%. Экологи говорят, что за два года количество деревьев уменьшилось на 10%. Может ли и то и другое быть правдой? (Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как (a+b)/2, где a – прирост за первый год, b – за второй.)

ВверхВниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

Вверх   Решение

Все задачи автора

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 319]      



Задача 64316

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7

Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.

Прислать комментарий     Решение

Задача 64333

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Теорема Пифагора (прямая и обратная) ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3+
Классы: 8,9

Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.

Прислать комментарий     Решение

Задача 64512

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

Прислать комментарий     Решение

Задача 64652

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?

Прислать комментарий     Решение

Задача 64685

Темы:   [ Теория алгоритмов ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

К кабинке канатной дороги, ведущей на гору, подошли четыре человека, которые весят 50, 60, 70 и 90 кг. Смотрителя нет, а в автоматическом режиме кабинка ездит туда-сюда только с грузом от 100 до 250 кг (в частности, пустой она не ездит), при условии, что пассажиров можно рассадить на две скамьи так, чтобы веса на скамьях отличались не более, чем на 25 кг. Каким образом все они смогут подняться на гору?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .