Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.

Вниз   Решение


Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.

ВверхВниз   Решение


Треугольник можно разрезать на три подобных друг другу треугольника.
Доказать, что его можно разрезать на любое число подобных друг другу треугольников.

ВверхВниз   Решение


По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.
Докажите, что найдётся пара и не соседних чисел с таким же свойством.

ВверхВниз   Решение


Даны два правильных тетраэдра с ребрами длины , переводящихся один в другой при центральной симметрии. Пусть ϕ – множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры ϕ .

ВверхВниз   Решение


Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
  а) это можно сделать, если  N + 1  – квадрат целого числа.
  б) если это можно сделать, то  N + 1  – квадрат целого числа.

ВверхВниз   Решение


Многочлен P(x) с действительными коэффициентами таков, что уравнение  P(m) + P(n) = 0  имеет бесконечно много решений в целых числах m и n.
Докажите, что у графика  y = P(x)  есть центр симметрии.

ВверхВниз   Решение


На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

ВверхВниз   Решение


Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.

Вверх   Решение

Все задачи автора

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



Задача 108227

Темы:   [ Вспомогательные подобные треугольники ]
[ Описанные четырехугольники ]
[ Подобные фигуры ]
[ Удвоение медианы ]
[ Углы между биссектрисами ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Прислать комментарий     Решение

Задача 110124

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 10,11

Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.

Прислать комментарий     Решение

Задача 110761

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ и вписанный угол ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие.
Прислать комментарий     Решение


Задача 110766

Темы:   [ Шестиугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вписанные и описанные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 110794

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Отношение, в котором биссектриса делит сторону ]
[ Периметр треугольника ]
[ Свойства биссектрис, конкуррентность ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношения площадей (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .