ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Женя не успел влезть в лифт на первом этаже дома и решил пойти по лестнице. На третий этаж он поднимается за 2 минуты. Сколько времени у него займет подъем до девятого этажа? Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности. а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет? Когда из бассейна сливают воду, уровень h воды в нём
меняется в зависимости от времени t по закону
а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое? Докажите, что для любого натурального n > 2 число
Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n. Дана бесконечная последовательность чисел a1, a2, a3, ... Известно, что для любого номера k можно указать такое натуральное число t, что Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось? Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать? На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя. Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA. Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно). |
Страница: << 1 2 [Всего задач: 9]
Даны многочлен P(x) и такие числа a1, a2, a3, b1, b2, b3, что a1a2a3 ≠ 0. Оказалось, что P(a1x + b1) + P(a2x + b2) = P(a3x + b3) для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.
Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?
Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно).
Фигура мамонт бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке