Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Акопян А.В.

Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.

Вниз   Решение


В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Может ли после 1989 таких операций порядок чисел оказаться исходным?

ВверхВниз   Решение


Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

ВверхВниз   Решение


Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

ВверхВниз   Решение


Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.

ВверхВниз   Решение


В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

ВверхВниз   Решение


Является ли число  49 + 610 + 320  простым?

ВверхВниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

ВверхВниз   Решение


Некоторые из чисел a1, a2, ..., a200 написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел a1, a2, ..., a100 содержатся все натуральные числа от 1 до 100 включительно.

ВверхВниз   Решение


Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.

ВверхВниз   Решение


Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

ВверхВниз   Решение


25 мальчиков и несколько девочек собрались на вечеринке и обнаружили забавную закономерность. Если выбрать любую группу не меньше чем из 10 мальчиков, а потом добавить к ним всех девочек, знакомых хотя бы с одним из этих мальчиков, то в получившейся группе число мальчиков окажется на 1 меньше, чем число девочек. Докажите, что некоторая девочка знакома не менее чем с 16 мальчиками.

ВверхВниз   Решение


H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.

ВверхВниз   Решение


Сумма положительных чисел a, b, c равна 3. Докажите, что  

ВверхВниз   Решение


Каждый катет прямоугольного треугольника увеличили на единицу. Могла ли его гипотенуза увеличиться более, чем на   ?

ВверхВниз   Решение


Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

ВверхВниз   Решение


Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

ВверхВниз   Решение


Произведение положительных чисел x, y и z равно 1.
Докажите, что если  1/x + 1/y + 1/z ≥ x + y + z,  то для любого натурального k выполнено неравенство  x–k + y–k + z–k ≥ xk + yk + zk.

ВверхВниз   Решение


В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.

ВверхВниз   Решение


В равнобедренном треугольнике ABC ( AB=BC ) точка O – центр описанной окружности. Точка M лежит на отрезке BO , точка M' симметрична M оносительно середины AB . Точка K – точка пересечения M'O и AB . Точка L на стороне BC такова, что CLO = BLM . Докажите, что точки O , K , B , L лежат на одной окружности.

ВверхВниз   Решение


Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.

Вверх   Решение

Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



Задача 116745

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116751

Темы:   [ Ортоцентр и ортотреугольник ]
[ Подобие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.

Прислать комментарий     Решение

Задача 64637

Темы:   [ Тетраэдр (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 10,11

Плоскость α пересекает рёбра AB, BC, CD и DA треугольной пирамиды ABCD в точках K, L, M и N соответственно. Оказалось, что двугранные углы
∠(KLA, KLM),  ∠(LMB, LMN),  ∠(MNC, MNK)  и  ∠(NKD, NKL)  равны. (Через  ∠(PQR, PQS)  обозначается двугранный угол при ребре PQ в тетраэдре PQRS.) Докажите, что проекции вершин A, B, C и D на плоскость α лежат на одной окружности.

Прислать комментарий     Решение

Задача 65378

Темы:   [ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Подобные треугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 66025

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Докажите, что окружности Гb и Гc пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .