Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Перлин А.

Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Вниз   Решение


Автор: Иванов С.

Дан треугольник ABC. Точки A1, B1 и C1 – середины сторон BC, AC и AB соответственно. На продолжении отрезка C1B1 отложен отрезок B1K по длине равный . Известно, AA1 = BC. Докажите, что AB = BK.

ВверхВниз   Решение


Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

ВверхВниз   Решение


В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

ВверхВниз   Решение


На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

ВверхВниз   Решение


На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC.

ВверхВниз   Решение


От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
  а) Могут ли спилы быть подобными, но не равными треугольниками?
  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

ВверхВниз   Решение


Автор: Знак Е.

Существует ли функция f(x) , определенная при всех x и для всех x,y удовлетворяющая неравенству

|f(x+y)+ sin x+ sin y|<2?

ВверхВниз   Решение


В кафе Цветочного города автомат выдаёт пончик, если ввести в него число x, при котором значение выражения  x² – 9x + 13  отрицательно. А если ввести число x, при котором отрицательно значение выражения  x² + x – 5,  то автомат выдаёт сироп. Сможет ли Незнайка, введя в автомат всего одно число, получить и то и другое?

ВверхВниз   Решение


Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

ВверхВниз   Решение


Один из углов треугольника на 120° больше другого.
Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.

ВверхВниз   Решение


Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d  — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.

ВверхВниз   Решение


Автор: Левин А.

Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки.

ВверхВниз   Решение


Докажите, что  

ВверхВниз   Решение


Автор: Перлин А.

Решите в положительных числах систему уравнений

   

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 7]      



Задача 98174

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Автор: Перлин А.

Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.

Прислать комментарий     Решение

Задача 109523

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10,11

Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

Прислать комментарий     Решение

Задача 109538

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4-
Классы: 8,9,10

Автор: Перлин А.

Решите в положительных числах систему уравнений

   

Прислать комментарий     Решение

Задача 109590

Темы:   [ Десятичная система счисления ]
[ Квадратный трехчлен (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Автор: Перлин А.

Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами?

Прислать комментарий     Решение

Задача 109572

Темы:   [ Геометрия на клетчатой бумаге ]
[ Покрытия ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

Автор: Перлин А.

Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата n ×n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата 100×100 , состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате 100× 100 .)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .