Страница:
<< 178 179 180 181
182 183 184 >> [Всего задач: 1984]
На плоскости отмечена точка O. Можно ли так расположить на плоскости а) 7 кругов; б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?
Доказать, что максимальное количество сторон выпуклого многоугольника, стороны
которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.
|
|
|
Сложность: 3+ Классы: 9,10
|
На хорде
AB окружности
K с центром в точке
O взята точка
C.
D —
вторая точка пересечения окружности
K с окружностью, описанной около
ACO. Доказать, что
CD =
CB.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
На прямоугольном листе клетчатой бумаги размером
m×
n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?
В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?
Страница:
<< 178 179 180 181
182 183 184 >> [Всего задач: 1984]