Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 10,11
|
В таблице A размером 10×10 написаны какие-то числа. Обозначим сумму всех чисел в первой строке через s1, во второй – через s2 и т.д. Аналогично сумму чисел в первом столбце обозначим через t1, во втором – t2 и т.д. Составлена новая таблица B размером 10×10, в неё вписаны числа следующим образом: в первой клетке первой строки пишется наименьшее из чисел s1 и t1, в третьей клетке пятой строки пишется
наименьшее из чисел s5 и t3, аналогично записана вся таблица. Оказалось, что можно так занумеровать клетки таблицы B числами от 1 до 100, что в клетке с k-м номером будет стоять число, меньшее или равное k. Какое максимальное значение может принимать при этих условиях сумма всех чисел таблицы A?
|
|
|
Сложность: 3+ Классы: 10,11
|
На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно
двумя различными способами поставить кубик на чёрный стол (причём в точности
на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)
Старинный замок был обнесён треугольной стеной. Каждая сторона стены была
поделена на три равные части, и в этих точках, а также в вершинах были построены
башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как
по оставшимся башням определить, где находились башни A, B, C, если
известно, что башни A, B, C стояли в вершинах?
В Чили в феврале проходил международный турнир по футболу. Первое место с 8
очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми
цифрами.
Страница:
<< 121 122 123 124
125 126 127 >> [Всего задач: 1984]