Страница:
<< 124 125 126 127
128 129 130 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 10,11
|
На кубе отмечены вершины и центры граней, а также проведены диагонали всех
граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки,
побывав в каждой из них ровно по одному разу?
|
|
|
Сложность: 3+ Классы: 7,8,9
|
В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.
|
|
|
Сложность: 3+ Классы: 10,11
|
Доказать, что в десятичной записи чисел 2n + 1974n и 1974n содержится одинаковое количество цифр.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые
два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей.
Доказать, что найдётся учёный, который имеет ровно одного друга из числа
участников конгресса.
|
|
|
Сложность: 3+ Классы: 10,11
|
Точка
A расположена на расстоянии 50 см от центра круга радиуса 1 см.
Разрешается точку
A отразить симметрично относительно произвольной прямой,
пересекающей круг; полученную точку отразить симметрично относительно любой
прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку
A
можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Страница:
<< 124 125 126 127
128 129 130 >> [Всего задач: 1984]