Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1982]      



Задача 78670

Темы:   [ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Процессы и операции ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На плоскости даны три точки. Из них выбираются любые две, строится серединный перпендикуляр к отрезку, их соединяющему, и все точки отражаются относительно этой прямой, затем из всех точек (старых и новых) снова выбираются какие-то две точки и вся процедура повторяется. Так делается бесконечно много раз. Доказать, что в плоскости найдётся такая прямая, что все полученные точки будут лежать по одну сторону от нее.
Прислать комментарий     Решение


Задача 78674

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 9,10

Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени?
Прислать комментарий     Решение


Задача 78677

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10

На бумажной ленте напечатаны автобусные билеты с номерами от 000 000 до 999 999. Затем синей краской пометили те билеты, у которых сумма цифр, стоящих на чётных местах, равна сумме цифр, стоящих на нечётных местах. Какая будет наибольшая разность между номерами двух соседних синих билетов?
Прислать комментарий     Решение


Задача 78678

Тема:   [ Теория игр (прочее) ]
Сложность: 3+
Классы: 9,10

Страна Фарра расположена на 1 000 000 000 островов. Между некоторыми островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что с каждого острова можно попасть на любой другой (возможно, за несколько дней). Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает, где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с ним на одном острове).
Прислать комментарий     Решение


Задача 78680

Темы:   [ Индукция в геометрии ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10

На окружности радиуса 1 отмечена точка O и из неё циркулем делается засечка вправо радиусом l. Из полученной точки O1 в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?
Прислать комментарий     Решение


Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .