Страница:
<< 218 219 220 221
222 223 224 >> [Всего задач: 1957]
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли такое число h, что ни для какого натурального числа n число [h·1969n] не делится на [h·1969n–1]?
|
|
Сложность: 4- Классы: 8,9,10
|
Дано 999-значное число. Известно, что если взять из него любые 50 последовательных цифр и вычеркнуть все остальные, то полученное число будет делиться на 250. (Оно может начинаться с нулей или просто быть нулём.)
Доказать, что исходное число делится на 2999.
|
|
Сложность: 4- Классы: 9,10
|
Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно
менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?
|
|
Сложность: 4- Классы: 9,10
|
Дано 29-значное число X = a1...a29 (0 ≤ ak ≤ 9, a1 ≠ 0). Известно, что для всякого k цифра ak встречается в записи данного числа a30–k раз (например, если a10 = 7, то цифра a20 встречается семь раз). Найти сумму цифр числа X.
|
|
Сложность: 4- Классы: 7,8,9
|
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть
прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика
B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в
четвёртую вершину квадрата?
Страница:
<< 218 219 220 221
222 223 224 >> [Всего задач: 1957]