ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра. |
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1957]
Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.
Из пункта A в другие можно попасть двумя способами: 1) выйти сразу и идти пешком; 2) вызвать машину и, подождав ее определённое время, ехать на ней. В каждом случае используется способ передвижения, требующий меньшего времени. При этом
Решить уравнение:
В выпуклом 13-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с наибольшим числом сторон. Какое самое большее число сторон может он иметь?
Докажите, что
Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке