ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1957]      



Задача 78784

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8

Существует ли число, квадрат которого начинается с цифр 123456789 и кончается цифрами 987654321?
Прислать комментарий     Решение


Задача 79296

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Натуральные числа a, b, c таковы, что числа  p = bc + a,  q = ab + c,  r = ca + b  простые. Доказать, что два из чисел p, q, r равны между собой.

Прислать комментарий     Решение

Задача 79605

Темы:   [ Неравенства с модулями ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Докажите, что если  a + b + c + d > 0,  a > cb > d,  то  |a + b| > |c + d|.

Прислать комментарий     Решение

Задача 105049

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

Прислать комментарий     Решение

Задача 105098

Тема:   [ Процессы и операции ]
Сложность: 3-
Классы: 6,7,8

Даны шесть слов:
   ЗАНОЗА
   ЗИПУНЫ
   КАЗИНО
   КЕФАЛЬ
   ОТМЕЛЬ
   ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?

Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .