Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды.

Вниз   Решение


В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?

ВверхВниз   Решение


В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.

ВверхВниз   Решение


В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.

ВверхВниз   Решение


Найдите объём правильного тетраэдра с ребром, равным a .

ВверхВниз   Решение


Сколько корней имеет уравнение sin x=x/100 ?

ВверхВниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите объём пирамиды.

ВверхВниз   Решение


Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .

ВверхВниз   Решение


Найдите высоту правильного тетраэдра с ребром a .

ВверхВниз   Решение


Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

ВверхВниз   Решение


У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня, и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода?

ВверхВниз   Решение


Дано четыре положительных числа a, p, c, k, произведение которых равно 1. Доказать, что  a² + p² + c² + k² + ap + ac + pc + ak + pk + ck ≥ 10.

ВверхВниз   Решение


Лёша и Ира живут в доме, на каждом этаже которого 9 квартир (в доме один подъезд). Номер этажа Лёши равен номеру квартиры Иры, а сумма номеров их квартир равна 329. Каков номер квартиры Лёши?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 363]      



Задача 107618

Тема:   [ Задачи на работу ]
Сложность: 2+
Классы: 7,8,9

Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?

Прислать комментарий     Решение

Задача 107673

Темы:   [ Арифметическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
[ Перегруппировка площадей ]
Сложность: 2+
Классы: 6,7,8

На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1
Прислать комментарий     Решение


Задача 107705

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 2+
Классы: 6,7,8

Лёша и Ира живут в доме, на каждом этаже которого 9 квартир (в доме один подъезд). Номер этажа Лёши равен номеру квартиры Иры, а сумма номеров их квартир равна 329. Каков номер квартиры Лёши?

Прислать комментарий     Решение

Задача 107735

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

Прислать комментарий     Решение

Задача 107737

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 6,7,8,9

Царь выделял на содержание писарского приказа 1000 рублей в год (все писари получали поровну). Царю посоветовали сократить численность писарей на 50%, а оставшимся писарям повысить жалование на 50%. На сколько изменятся при этом затраты царя на писарский приказ?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .