ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Вниз   Решение


В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

ВверхВниз   Решение


В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.

ВверхВниз   Решение


Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1984]      



Задача 107845

Темы:   [ Задачи-шутки ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 6,7,8,9

Найдутся ли натуральные числа x, y и z, удовлетворяющие условию  28x + 30y + 31z = 365?

Прислать комментарий     Решение

Задача 108076

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 8,9

В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

Прислать комментарий     Решение

Задача 111327

Темы:   [ Десятичная система счисления ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

Верно ли, что к любому числу, равному произведению двух последовательных натуральных чисел, можно приписать в конце какие-то две цифры так, что получится квадрат натурального числа?

Прислать комментарий     Решение

Задача 111328

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 3-
Классы: 7,8,9

В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

Прислать комментарий     Решение

Задача 111333

Темы:   [ Средние величины ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .