ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность. Существует ли такой многочлен P(x), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (P(x))n, n > 1, положительны? Известно, что вершины квадрата T принадлежат прямым, содержащим стороны квадрата P, а вписанная окружность квадрата T совпадает с описанной окружностью квадрата P. Найдите углы восьмиугольника, образованного вершинами квадрата P и точками касания окружности со сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника делят окружность. В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника. В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D. Внутри квадрата ABCD выбрана такая точка M, что ∠MAC = ∠MCD = α. Найдите величину угла ABM. Натуральные числа а, b, c и d таковы, что ab = cd. Может ли число a + b + c + d оказаться простым? В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B, ∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC. В треугольнике ABC проведена медиана AM. В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если AC = AB + AD. На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3. Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую. Внутри треугольника ABC взята такая точка M, что ∠BMC = 90° + ½ ∠BAC и прямая AM содержит центр O описанной окружности треугольника BMC. Докажите, что точка M – центр вписанной окружности треугольника ABC. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Пусть M – внутренняя точка прямоугольника ABCD, а S – его площадь. Докажите, что S ≤ AM·CM + BM·DM.
Внутри треугольника ABC взята такая точка M, что ∠BMC = 90° + ½ ∠BAC и прямая AM содержит центр O описанной окружности треугольника BMC. Докажите, что точка M – центр вписанной окружности треугольника ABC.
Числа 1, 2, 3, ..., n записываются в некотором порядке: a1, a2, a3, ..., an. Берётся сумма S = a1/1 + a2/2 + ... + an/n. Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках a1, a2, a3, ..., an) встретились все целые числа от n до n + 100.
В стране 1988 городов и 4000 дорог.
Докажите, что если K чётно, то числа от 1 до K – 1 можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на K.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке