ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

Вниз   Решение


Дан тетраэдр ABCD. Точка X выбрана вне тетраэдра так, что отрезок XD пересекает грань ABC во внутренней точке. Обозначим через A', B', C' проекции точки D на плоскости XBC, XCA, XAB соответственно. Докажите, что  A'B' + B'C' + C'A' < DA + DB + DC.

ВверхВниз   Решение


В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника.

ВверхВниз   Решение


Дан треугольник ABC. В нём H – точка пересечения высот, I – центр вписанной окружности, O – центр описанной окружности, K – точка касания вписанной окружности со стороной BC. Известно, что отрезки  IO || BC.  Докажите, что отрезки  AO || HK.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



Задача 105177

Темы:   [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9,10,11

Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Прислать комментарий     Решение

Задача 108103

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. В нём H – точка пересечения высот, I – центр вписанной окружности, O – центр описанной окружности, K – точка касания вписанной окружности со стороной BC. Известно, что отрезки  IO || BC.  Докажите, что отрезки  AO || HK.

Прислать комментарий     Решение

Задача 65399

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

а) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце. Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 2×2, который тоже не приводится.

б) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце или на любой диагонали (угловые клетки тоже считаются диагоналями). Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 4×4, который тоже не приводится.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .