Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Докажите, что если у тетраэдра два отрезка, идущие из концов некоторого ребра в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из концов скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.

Вниз   Решение


Имеются одна красная и k  (k > 1)  синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?

ВверхВниз   Решение


Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.

ВверхВниз   Решение


Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть a, b и c – попарно взаимно простые натуральные числа. Найдите все возможные значения  ,  если известно, что это число целое.

ВверхВниз   Решение


Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.

ВверхВниз   Решение


Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.

ВверхВниз   Решение


Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

ВверхВниз   Решение


а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

ВверхВниз   Решение


На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Точки A, B и C лежат на одной прямой, точка P — вне этой прямой. Докажите, что центры описанных окружностей треугольников  ABP, BCP, ACP и точка P лежат на одной окружности.

ВверхВниз   Решение


Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке.

ВверхВниз   Решение


Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  ak+1ak + 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

ВверхВниз   Решение


На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 108215  (#02.4.9.3)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

В равнобедренном треугольнике ABC ( AB=BC ) точка O – центр описанной окружности. Точка M лежит на отрезке BO , точка M' симметрична M оносительно середины AB . Точка K – точка пересечения M'O и AB . Точка L на стороне BC такова, что CLO = BLM . Докажите, что точки O , K , B , L лежат на одной окружности.
Прислать комментарий     Решение


Задача 110102  (#02.4.9.4)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4+
Классы: 7,8,9,10

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.
Прислать комментарий     Решение


Задача 110103  (#02.4.9.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли расставить по кругу числа 1, 2, ..., 60 в таком порядке, чтобы сумма каждых двух чисел, между которыми находится одно число, делилась на 2, сумма каждых двух чисел, между которыми находятся два числа, делилась на 3, сумма каждых двух чисел, между которыми находятся шесть чисел, делилась на 7?

Прислать комментарий     Решение

Задача 108216  (#02.4.9.6)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия трапеции ]
[ Центральная симметрия (прочее) ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 4+
Классы: 9,10,11

Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .
Прислать комментарий     Решение


Задача 110105  (#02.4.9.7)

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Средние величины ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .