Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Найти наименьшее натуральное N, дающее остаток 1 по модулю 2, 2 по модулю 3, ..., 7 по модулю 8.

Вниз   Решение


Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.

ВверхВниз   Решение


Постройте радикальную ось двух непересекающихся окружностей S1 и S2.

ВверхВниз   Решение


Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника?

ВверхВниз   Решение


Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

ВверхВниз   Решение


Доказать, что в двудольном плоском графе  E ≥ 2F,  если  E ≥ 2  (E – число рёбер, F – число областей).

ВверхВниз   Решение


Найдите наибольшее из чисел  5100, 691, 790, 885.

ВверхВниз   Решение


Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

ВверхВниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

ВверхВниз   Решение


На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

ВверхВниз   Решение


Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке F, а продолжения сторон BC и AD — в точке E. Докажите, что окружности с диаметрами AC, BD и EF имеют общую радикальную ось, причем на ней лежат ортоцентры треугольников  ABE, CDE, ADF и BCF.

ВверхВниз   Решение


На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 363]      



Задача 110919

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

На столе лежало 100 яблок, 99 апельсинов и груши. К столу подходили ребята. Первый взял яблоко, второй – грушу, третий – апельсин, следующий опять яблоко, следующий за ним – грушу, за ним – апельсин. Далее ребята разбирали фрукты в таком же порядке до тех пор, пока стол не опустел. Сколько могло быть груш?

Прислать комментарий     Решение

Задача 115385

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 6,7,8

У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня, и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода?

Прислать комментарий     Решение

Задача 115386

Темы:   [ Теория алгоритмов ]
[ Таблицы и турниры (прочее) ]
Сложность: 2+
Классы: 6,7,8

В квадрате 4×4 клетки левой половины покрашены в чёрный цвет, а остальные – в белый. За одну операцию разрешается перекрасить в противоположный цвет все клетки внутри любого прямоугольника. Как за три операции из первоначальной раскраски получить шахматную?

Прислать комментарий     Решение

Задача 32067

Темы:   [ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?

Прислать комментарий     Решение


Задача 32136

Темы:   [ Подсчет двумя способами ]
[ Шестиугольники ]
Сложность: 2+
Классы: 7,8,9

На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .