ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1957]      



Задача 34837

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9,10

Про действительные числа a, b, c известно, что  (a + b + c)c < 0.  Докажите, что  b² – 4ac > 0.

Прислать комментарий     Решение

Задача 35324

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

Прислать комментарий     Решение

Задача 57536

Темы:   [ Экстремальные точки треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9,10

Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.
Прислать комментарий     Решение


Задача 57812

Тема:   [ Перенос помогает решить задачу ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Точка M, расположенная внутри треугольника, движется параллельно стороне BC до пересечения со стороной CA, затем параллельно AB до пересечения с BC, затем параллельно AC до пересечения с AB и т. д. Докажите, что через некоторое число шагов траектория движения точки замкнется.
Прислать комментарий     Решение


Задача 64707

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Витя хочет найти такое выражение, состоящее из единиц, скобок, знаков "+" и "×" что
  - его значение равно 10;
  - если в этом выражении заменить все знаки "+" на знаки "×", а знаки "×" на знаки "+", всё равно получится 10.
Приведите пример такого выражения.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .