ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Много лет каждый день в полдень из Гавра в Нью-Йорк отправляется почтовый пароход и в то же время из Нью-Йорка отходит идущий в Гавр пароход той же компании. Каждый из этих пароходов находится в пути ровно семь суток, и идут они по одному и тому же пути. Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих? Как на комплексной плоскости определить показательную функцию az? Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани? Найдите остаток от деления 8900 на 29. Какое наименьшее натуральное число не является делителем 50!? Постройте окружность, касательные к которой,
проведенные из трех данных точек A, B и C, имели бы длины a, b и c
соответственно.
На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках. В треугольнике ABC с углом A, равным
120o,
биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите,
что
Докажите, что 3003000 – 1 делится на 1001. а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число. Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным
преобразованием можно перевести в четырехугольник, у которого противоположные
углы прямые.
Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. Налим-лиман. Найти такие цифры, которые при подстановке их вместо букв в выражение НАЛИМ × 4 = ЛИМАН давали тождество (разным буквам соответствуют разные цифры, а одинаковым одинаковые) а) Докажите, что если угол A треугольника ABC
равен
120o, то центр описанной окружности и ортоцентр
симметричны относительно биссектрисы внешнего угла A.
Червяк ползет по столбу, начав путь от его основания. Каждый день он проползает вверх на 5 см, а за каждую ночь сползает вниз на 4 см. Когда он достигнет верхушки столба, если его высота равна 75 см?
Фома и Ерёма нашли на дороге по пачке 11-рублевок. В чайной Фома выпил 3 стакана чая, съел 4 калача и 5 бубликов. Ерёма выпил 9 стаканов чая, съел 1 калач и 4 бублика. Стакан чая, калач и бублик стоят по целому числу рублей. Оказалось, что Фома может расплатиться 11-рублевками без сдачи. Покажите, что это может сделать и Ерёма. Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7? |
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 644]
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7?
Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Найти наибольшее значение, которое может принимать выражение aek – afh + bfg – bdk + cdh – ceg, если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке