Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Автор: Чернов Н.

На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ...,  где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
  а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
  б) точка Cn совпадает с C?

Вниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


Через вершину A квадрата ABCD проведены прямые l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые. Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны.

ВверхВниз   Решение


На боковых сторонах AB и CD трапеции ABCD взяты точки M и N так, что отрезок MN параллелен основаниям и делит площадь трапеции пополам. Найдите длину MN, если BC = a и AD = b.

ВверхВниз   Решение


Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


ВверхВниз   Решение


На стороне AC треугольника ABC взята точка E. Через точку E проведены прямая DE параллельно стороне BC и прямая EF параллельно стороне AB (D и E — точки соответственно на этих сторонах). Докажите, что SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.

ВверхВниз   Решение


Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?

ВверхВниз   Решение


Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка A1 так, что  BA1 : A1C = 2 : 1.  В каком отношении медиана CC1 делит отрезок AA1?

ВверхВниз   Решение


а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.

ВверхВниз   Решение


В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более k хорд, то сумма длин хорд меньше $ \pi$k.

ВверхВниз   Решение


На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

ВверхВниз   Решение


На плоскости расположено n точек, причем площадь любого треугольника с вершинами в этих точках не превосходит 1. Докажите, что все эти точки можно поместить в треугольник площади 4.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

ВверхВниз   Решение


а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

ВверхВниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

ВверхВниз   Решение


На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79240  (#М226)

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Задача 55131  (#М227)

Темы:   [ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Прислать комментарий     Решение

Задача 79255  (#М228)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 4
Классы: 7,8,9

Автор: Логачев Д.

Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
а) N2 - 1 клетка?
б) N2 - 2 клетки?
в) N клеток?
Прислать комментарий     Решение


Задача 79256  (#М229)

Темы:   [ Теория игр (прочее) ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11

Автор: Белкин А.

В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно:   а) 0,5;   б) 0,49;   в) 0,34;   г) ⅓.   Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?

Прислать комментарий     Решение

Задача 79257  (#М230)

Темы:   [ Против большей стороны лежит больший угол ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Пятиугольники ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 5-
Классы: 8,9,10

Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .