ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?

Вниз   Решение


На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 86]      



Задача 56713  (#03.053B)

Тема:   [ Радикальная ось ]
Сложность: 3
Классы: 9

Окружность задана уравнением f (x, y) = 0, где f (x, y) = x2 + y2 + ax + by + c. Докажите, что степень точки (x0, y0) относительно этой окружности равна f (x0, y0).
Прислать комментарий     Решение


Задача 56714  (#03.053)

Темы:   [ Радикальная ось ]
[ Метод координат на плоскости ]
Сложность: 5
Классы: 8,9,10

На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



Прислать комментарий     Решение

Задача 56715  (#03.054)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.
Прислать комментарий     Решение


Задача 56716  (#03.055)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56717  (#03.056)

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .